English | 中文版 | 金宝博网址hg622.com版 企业登录 | 个人登录 | 邮件订阅
厂商 仪器 试剂 服务 新闻 文章 视频 高级搜索
当前身分 > 产品目录 > 显微系统 > 电子显微镜/扫描探针 > HS-AFM 超高速视频级原子力显微镜
HS-AFM 超高速视频级原子力显微镜
HS-AFM 超高速视频级原子力显微镜
产地/品牌:鸿运娱乐城代理 RIBM产品类别:电子显微镜/扫描探针
型       号:HS-AFM SS-NEX 最后更新:2019-6-20
货       号:
立刻询价 电话咨询
[公布议论] [本类别的产品] [本类别的供应商] [收藏此产品]
销售商: Quantum量子科学仪器贸易(北京)有限公司 察看该公司一切产品 >>
  • 产品介绍
  • 公司简介
鸿运娱乐城代理RIBM  HS-AFM


    超高速视频级原子力显微镜(Sample-Scanning High-Speed Atomic Force Microscope ,HS-AFM SS-NEX)是由鸿运娱乐城代理 Kanazawa 大学 Prof. Ando 教授团队研发的,也是世界上第一台能够抵达视频级成像的商业化原子力显微镜。HS-AFM突破了传统原子力显微镜“扫描成像速慢”的限制,能够实现在液体情况下超快速动态成像,分辨率为纳米水平。样品无需特别固定,不影响生物分子的活性,特别适用于生物大分子互作动态观察。推出至今,环球已有80多位用户,公布 SCI 文章 200 余篇,包括Science, Nature, Cell 等顶级杂志。

◆ 扫描速度最高可达 20 frame/s
◆ 有 4 种扫描台可供选择
◆ 悬臂探针共振频率高,弹簧系
◆ 悬臂探针可主动漂移校准,


应用包括:使用 HS-AFM可在纳米尺度动态实时记载生物大分子的运动以及分子间相互作用,包括:     
walking myosin V
dendrite growth in
neuron 实时观察
rotorless F1-ATPase
light response for D69N
 IgG antibody
150nm * 150nm
plasmid DNA
250nm * 250nm
500nm * 500nm
40nm * 40nm
lipid membrane
3500nm * 3500nm
350nm poly beads
900nm * 900nm
3000nm * 3000nm
350nm poly beads
3000nm * 3000nm

 1.Video imaging of walking myosin V   实时观察myosin V蛋白的运动
                                                      N. Kodera et al. Nature 468, 72 (2010). Kanazawa University  
2.Real-space and real-time dynamics of CRISPR-Cas9   实时显示CRISPR基因编辑
                                      Mikihiro et al. Nature Communications,  (2017). Kanazawa University

扫描速度  scan speed  50 ms/frame (20 frames/sec)               
压电扫描器 piezo range  X: 0.7µm, Y:0.7µm, Z: 0.4µm
样品大小 sample size  1.5mm in diameter
扫描情况 environment  In liquid/In air
操纵系统 control system  PID control, Dynamic PID control
significant Function  Scanner active dumping,Drift  correction for cantilever excitation
Light irradiation Unit
Light irradiation unit for the experiments with caged
compounds.  Variable wavelength: 350-560nm                   
wide scanner
1frames/s;XY:4µm×4µm, Z:0.7µm  
ultra wider scanner
0.1frames/s;XY:30µm×30µm, Z:1.2µm  
Circulation unit
The observation solutions can be exchanged while
continuing AFM observation. 

1. Ando T.; "Directly watching biomolecules in action by high-speed atomic force microscopy"; Biophys. Rev. (2017)
2. Ando T.; "High-speed Atomic Force Microscopy for Observing Protein Molecules in Dynamic Action", Proceedings of SPIE 10328, Selected Papers from the 31st International Congress on High-Speed Imaging and Photonics (2017)
3. Aybeke E., Belliot G., Lemaire‐Ewing S., Estienney M., Lacroute Y., Pothier P., Bourillot E., Lesniewska, E.; "HS‐AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts"; Small 13 1 (2017)
4. Cai W, Liu Z., Chen Y., Shang G.; "A Mini Review of the Key Components used for the Development of High-Speed Atomic Force Microscopy"; Science of Advanced Materials Vol. 9 Numb. 1 (2017) p.77-88
5. Colom A., Redondo-Morata L., Chiaruttini N., Roux A., Scheuring S.; "Dynamic remodeling of the dynamin helix during membrane constriction"; Proceedings of the National Academy of Sciences 114 21 (2017)
6. Dufrêne Y., Ando T., Garcia R., Alsteens D., Martinez-Martin D., Engel A., Gerber Ch., Müller D.; "Imaging modes of atomic force microscopy for application of molecular and cell biology"; Nat. Nanotechnol. 12 (2017) p.295-307
7. Harada H., Onoda A., Uchihashi T., Watanabe H., Sunagawa N., Samejima M., Igarashi K., Hayashi T.; "Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis"; Chemical Science (2017)
8. Karner A., Nimmervoll B., Plochberger B., Klotzsch E., Horner A., Knyazev D., Kuttner R., Winkler K., Winter L., Siligan Ch., Ollinger N., Pohl P., Preiner J.; "Tuning membrane protein mobility by confinement into nanodomains"; Nature Nanotechnology 12 3 (2017) p.260-266
9. Keya J., Inoue D., Suzuki Y., Kozai T., Ishikuro D., Kodera N., Uchihashi T., Kabir A., Endo M., Sada K., Kakugo A.; "High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM" ; Scientific Reports 7 1 (2017)
10. Kim Y.; "An Advanced Characterization Method for the Elastic Modulus of Nanoscale Thin-Films Using a High-Frequency Micromechanical Resonator"; Materials 10 7 (2017)
11. Kim Y.; "An evaluation technique for high-frequency dynamic behavior of a sandwich microcantilever beam"; Journal of Sandwich Structures & Materials (2017)
12. Korolkov V., Baldoni M., Watanabe K., Taniguchi T., Besley E., Beton P.; "Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays"; Nature Chemistry (2017)
13. Legrand B., Salvetat J.-P., Walter B., Faucher M., Théron D., Aimé J.-P.; "Multi-MHz micro-electro-mechanical sensors for atomic force microscopy"; Ultramicroscopy 175 (2017) p.46-57
14. Liao H.-S., Chih-Wen Yang, Hsien-Chen Ko, En-Te Hwu, Ing-Shouh Hwang; "Imaging initial formation processes of nanobubbles at the graphite–water interface through high-speed atomic force microscopy"; Applied Surface Science (2017)
15. Matsui S., Kureha T., Hiroshige S., Shibata M., Uchihashi T., Suzuki D.; "Fast Adsorption of Soft Hydrogel Microspheres on Solid Surfaces in Aqueous Solution"; Angewandte Chemie (2017)
16. Mierzwa B., Chiaruttini N., Redondo-Morata L., Moser von Filseck J., König J., Larios J., Poser I., Müller-Reichert T., Scheuring S., Roux A., Gerlich D.; "Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodeling during cytokinesis"; Nature Cell Biology (2017)
17. Miyata K., Tracey J., Miyazawa K., Haapasilta V., Spijker P., Kawagoe Y., Foster A., Tsukamoto K., Fukuma T.; "Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation"; Nano Lett. 17 7 (2017) p.4083-4089
18. Miyazawa K., Watkins M., Shluger A., Fukuma T.; "Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite–water interfaces"; Nanotechnology Vol. 28 Numb. 24 (2017)
19. Mohamed M., Kobayashi A., Taoka A., Watanabe-Nakayama T., Kikuchi Y., Hazawa M., Minamoto T., Fukumori Y., Kodera N., Uchihashi T., Ando T., Wong R.; "High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells"; ACS Nano 11 6 (2017) p.5567-5578
20. Nievergelt A., Andany S., Adams J., Hannebelle M., Fantner G.; "Components for high-speed atomic force microscopy optimized for low phase-lag"; Proceedings of 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (2017)
21. Rangl M., Rima L., Klement J., Miyagi A., Keller S., Scheuring S.; "Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using High-Speed Atomic Force Microscopy"; Journal of Molecular Biology 429 7 (2017) p.977-986
22. Ren J., Zou Q.; "High-speed dynamic-mode atomic force microscopy imaging of polymers: an adaptive multiloop-mode approach"; Beilstein J. Nanotechnol. 8 (2017) p.1563-1570
23. Ricci M., Trewby W., Cafolla C., Voïtchovsky K.; "Direct observation of the dynamics of single metal ions at the interface with solids in aqueous solutions"; Scientific Reports 7 43234 (2017)
24. Rigato A., Miyagi A., Scheuring S., Rico F.; "High-frequency microrheology reveals cytoskeleton dynamics in living cells"; Nature Physics (2017) DOI: 10.1038/NPHYS4104
25. Ruan Y., Miyagi A., Wang X., Chami M., Boudker O., Scheuring S.; "Direct visualization of glutamate transporter elevator mechanism by high-speed AFM"; PNAS 114 7 (2017) p.1584-1588
26. Sadeghian H., Herfst R., Dekker B., Winters J., Bijnagte T., Rijnbeek R.; "High-throughput atomic force microscopes operating in parallel"; Review of Scientific Instruments 88 033703 (2017)
27. Sakiyama Y., Panatala R., Lim R.; "Structural Dynamics of the Nuclear Pore Complex"; Seminars in Cell and Developmental Biology (2017)
28. Shibata M., Watanabe H., Uchihashi T., Ando T., Yasuda R.; "High-speed atomic force microscopy imaging of live mammalian cells"; Biophysics and Physicobiology Vol. 14 (2017) p.127-135
29. Terahara N., Kodera N., Uchihashi T., Ando T., Namba K., Minamino T.; "Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor"; Science Advances 3 11 eaao4119 (2017)
30. Uchihashi T., Scheuring S.; "Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes"; Biochim Biophys Acta. (2017)
31. Usukura E., Narita A., Yagi A., Sakai N., Uekusa Y., Imaoka Y., Ito S., Usukura J.; "A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM)"; Scientific Reports 7 (2017) 
32. Watanabe S., Ando T.; "High-speed XYZ-nanopositioner for scanning ion conductance microscopy"; Applied Physics Letters 111 11 (2017)
33. Watanabe-Nakayama T., Kodera N., Konno H., Ono K., Teplow D., Yamada M., Ando T.; "Nano-Space Video Imaging Reveals Structural Dynamics of Fibrous Protein Assembly and Relevant Enzymes"; Biophysical Journal 112 3 (2017)
34. Zhang Y., Tunuguntla R., Choi P., Noy A.; "Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy"; Philosophical Transactions of The Royal Society B Biological Sciences 372 (2017)
35. Zhang Y., Yoshida A., Sakai N., Uekusa Y., Kumeta M., Yoshimura S.; "In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy" Microscopy 20 (2017) p.272-282
mg娱乐场文献详见: http://www.highspeedscanning.com/hs-afm-references.html


荷兰Lumicks AFS高通量分子操控分析仪(声镊): http://www.qd-china.com/products2.aspx?id=436
荷兰Lumicks u-Flux层流微流控系统:http://www.qd-china.com/products2.aspx?id=454
荷兰Lumicks m-Trap超高分辨率双光镊:http://www.qd-china.com/products2.aspx?id=453 
澳门星际国际网址Oxford Nanoimaging新一代超分辨率显微镜: http://www.qd-china.co/products2.aspx?id=443 
快速询价登录注册在线询价 (请留下您的联系方式,以便供应商联系您)
* 姓  名:
* 地  区:
* 单  位:
职  位:
* 金宝博网址hg622.com/电话:
* E-mail:
需要 不需要
需要报价 不需要报价
留  言:
Copyright(C) 1998-2019 生物器材网 电话:021-64166852;13621656896 E-mail:info@bio-equip.com